Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications. These devices incorporate passive flexures and actively stiffness-changing rods to modify kinematic freedom. A rational design pipeline informs the flexures’ topological arrangements, geometric parameters, and control signals based on targeted mobilities, enabling the creation of unitary joints with up to six degrees of freedom. Our demonstrative application examples include a wrist device that has an effective stiffness of 0.370 Nm/deg (unlocked state, 5% displacement) to 2.278 Nm/deg (locked state, 1% displacement) to enable dynamic joint mobility control, a haptic thimble device (2.27-52.815 Nmm−1at 1% displacement) that mimics the sensation of touching physical materials ranging from soft gel to metal surfaces, and a wearable device composed of multiple joints tailored for the arm and hand to augment haptic experiences or facilitate muscle training. We believe the presented method can help democratize compliant metastructures development and expand their versatility for broader contexts.more » « less
- 
            Experimentally Identified Models of McKibben Soft Actuators as Primary Movers and Passive Structuresnull (Ed.)Abstract Soft robots join body and actuation, forming their structure from the same elements that induce motion. Soft actuators are commonly modeled or characterized as primary movers, but their second role as support structure introduces strain–pressure combinations outside of normal actuation. This article examines a more complete set of possible strain–pressure combinations for McKibben actuators, including passive or unpressurized, deformation, pressurized extension and compression of a pressurized actuator beyond the maximum actuation strain. Each region is investigated experimentally, and empirical force–displacement–pressure relationships are identified. Particular focus is placed on ensuring that empirical relationships are consistent at boundaries between an actuator’s strain–pressure regions. The presented methodology is applied to seven McKibben actuator designs, which span variations in wall thickness, enclosure material, and actuator diameter. Empirical results demonstrate a trade-off between maximum contraction strain and force required to passively extend. The results also show that stiffer elastomers require an extreme increase in pressure to contract without a compensatory increase in maximum achieved force. Empirical force–displacement–pressure models were developed for each variant across all the studied strain–pressure regions, enabling future design variation studies for soft robots that use actuators as structures.more » « less
- 
            Liquid crystal elastomers (LCEs) are becoming increasingly popular as a shape memory material for soft robot actuators that operate in a contractile or flexural mode. There have been previously studies on the use of LCEs for reversible changes in surface topography. However, surface protrusions have typically been limited to the order of 1 μm or depend on light, heat, or electrical stimulation that are difficult to locally control or require relatively high voltage. This article presents a novel operation mode of LCE actuators based on the wrinkling behavior of an LCE‐elastomer bilayer architecture. Embedding a liquid‐metal‐based conductive ink within the LCE enables electrical control of surface wrinkling through Joule heating. The actuator cells can generate wrinkles with amplitudes ranging from 17 to 45 μm within 30 s under an input power of 2 W and a voltage on the order of 1 V. As the bilayer is composed entirely of soft materials, it is highly deformable, flexible, and can be integrated into a multi‐cell array capable of bending on curved surfaces.more » « less
- 
            Current models of bending in soft arms are formulated in terms of experimentally determined, arm-specific parameters, which cannot evaluate fundamental differences in soft robot arm design. Existing models are successful at improving control of individual arms but do not give insight into how the structure of the arm affects the arm’s capabilities. For example, omnidirectional soft robot arms most frequently have three parallel actuators, but may have four or more, while common biological arms, including octopuses, have tens of distinct longitudinal muscle bundles. This article presents a quasi-static analytical model of soft arms bent with longitudinal actuators, based on equilibrium principles and assuming an unknown neutral axis location. The model is presented as a generalizable framework and specifically implemented for an arm with [Formula: see text] fluid-driven actuators, a subset of which are pressurized to induce a bend with a certain curvature and direction. The presented implementation is validated experimentally using planar (2D) and spatial (3D) bends. The planar model is used to initially estimate pressure for a closed-loop curvature control system and to bound the accessible configurations for a rapidly-exploring random trees (RRT) motion planner. A three-segment planar arm is demonstrated to navigate along a planned trajectory through a gap in a wall. Finally, the model is used to explore how the arm morphology affects maximum curvature and directional resolution. This research analytically connects soft arm structure and actuator behavior to unloaded arm performance, and the results may be used to methodically design soft robot arms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
